VISION 21 HYBRID CONCEPTS

SCOTT SAMUELSEN ASHOK RAO

ADVANCED POWER AND ENERGY PROGRAM
NATIONAL FUEL CELL RESEARCH CENTER

RODNEY GEISBRECHT DOE FRED ROBSON

KRAFTWORK SYSTEMS, INC.

BYRON WASHOM

SPENCER MANAGEMENT ASSOCIATES

WILLIAM DAY

PRATT & WHITNEY

VISION 21 PROGRAM OBJECTIVES

- PRODUCE ELECTRICITY AND TRANSPORTATION FUELS AT COMPETITIVE COSTS
- MINIMIZE ENVIRONMENTAL IMPACTS ASSOCIATED WITH FOSSIL FUEL USEAGE
- ATTAIN HIGH EFFICIENCY
 - NATURAL GAS 75% (LHV)
 - COAL 60% (HHV)
 (W/O CO2 CAPTURE/SEQUESTRATION & CO-PRODUCTS)

PROGRAM OBJECTIVE

• IDENTIFY NATURAL GAS AND COAL BASED CYCLE CONFIGURATIONS THAT MEET V21 GOALS

PROGRAM APPROACH

- SUB-SYSTEM SELECTION SELECT FUEL PROCESSING, POWER GENERATION, AND EMISSION CONTROL TECHNOLOGY SCENARIOS WITH POTENTIAL TO ACHIEVE V21 GOALS
- SCREENING ANALYSIS ANALYZE/OPTIMIZE SELECTED TECHNOLOGY SCENARIOS TO SELECT CYCLE CONFIGURATIONS
 - START WITH BASIC DESIGN WITH RELATIVELY NEAR TERM TECHNOLOGY
 - IF V21 TARGETS NOT REALIZED, INCORPORATE MORE ADVANCED DESIGNS
- <u>DETAILED ANALYSIS</u> ANALYZE SELECTED PROMISING CYCLES TO DEVELOP DETAILED PERFORMANCE AND COST ESTIMATES

SUB-SYSTEM SELECTION

NG-Natural Gas CFB-Circulating Fluided FC-Fuel Cell GT-Gas Turbine PFB-Pressurized Fluid Bed IFC-Indirectly Fired Cycle ST-Steam Turbine

GAS TURBINE W/O FUEL CELL NOT SUFFICIENT

GT-BASED CYCLE EFFICIENCIES

SUB-SYSTEM SELECTION

- GAS TURBINES + FUEL CELLS ARE REQUIRED TO ATTAIN V21 EFFICIENCY GOALS
- COAL MUST BE CONVERTED TO CLEAN GAS TO UTILIZE GAS TURBINES/FUEL CELLS **I** GASIFICATION

DESIGN BASIS

ISO CONDITIONS

NOMINAL PLANT OUTPUT: 300 MW

• FUELS: Natural gas

Coal (Illinois # 6)

• GT FIRING TEMP: \leq 3100 F

• GT COMRESSOR EFFICIENCY: 90%+ (Isentropic)

GT EXPANDER EFFICIENCY: 93%+ (Isentropic)

GT COOLING TECHNOLOGY: Ceramics/TBC/Air/Humid Air

SCREENING ANALYSIS NATURAL GAS CASES

THERMAL EFFICIENCY

- HIGH PRESSURE SOFC / IC GT HYBRID
- HIGH PRESSURE SOFC / HAT HYBRID
- ATMOSPHERIC PRESSURE MCFC / CHEMICALLY RECUPERATED GT (WITH HITAF) HYBRID

CO₂ RECOVERY

- O₂ BREATHING HIGH PRESSURE SOFC / HAT WITH TEMP MODERATED BY CO₂ RECYCLE
- ADVANCED RANKINE CYCLE (GT) WITH CES COMBUSTOR & HIGH TEMP H₂ SEPARATING MEMBRANE

High Pressure IC GT / SOFC

HAT / SOFC

 η LHV > 75%, π OPT \cong 20

Chemically Recuperated GT / Bottoming MCFC

 η lhv \cong 70%, π opt \cong 25

HAT / O₂ Blown SOFC with CO₂ Recycle

 η LHV > 60%, π OPT \cong 20

Advanced Rankine (GT) / CES Combustor / HT H₂ Separating Membrane

 η LHV \cong 52%, π \cong 3200

PERFORMANCE COMPARISONS

Natural Gas Based Cycles

	HP SOFC +IC GT HYBRID	HP SOFC + HAT HYBRID	ATIM PINCEC +IC GT HYBRID	O₂ BREATHING HP SOFC +HAT HYBRID	ADV RANKINE (H ₂ /O ₂ COMBUSTION)
%OFTOTAL POWERBY FUEL CELL	72	68	74	68	-
%OFTOTAL POWER BY GAS TURBINE	28	32	26	32	100
THERMAL EFFICIENCY,% LHV	>75	<i>>7</i> 5	70	>60	52
SPECIFIC POWER, KW/LB/S	985	1000	830	800	-

SCREENING ANALYSIS COAL BASED CASES

THERMAL EFFICIENCY

- SHELL GASIF / HT CLEANUP SOFC HYBRID
- TEXACO GASIF SOFC / HAT HYBRID
- F-W PARTIAL GASIF SOFC / HITAF GT HYBRID

CO₂ RECOVERY

- SHELL GASIF / HT CLEANUP O₂ BREATHING H P SOFC / HAT WITH TEMP MODERATED BY CO₂ RECYCLE
- SHELL GASIF / HT CLEANUP / SHIFT / HT H₂ MEMBRANE SEPARATION ADVANCED RANKINE CYCLE (GT) CES COMBUSTOR

COPRODUCTION

TEXACO IGHAT WITH F-T LIQUIDS

HT GASIFICATION WITH HT GAS COOLING HAT/SOFC

GASIFIER OPERATING TEMP VERSUS COLD GAS h

MODERATE TEMP GASIFICATION ADVANCED TRANSPORT REACTOR

LT GASIFICATION WITH HT GAS COOLING SOFC HYBRID

SUMMARY

NATURAL GAS

- PRESSURIZED SOFC HYBRID CONFIGURATIONS IDENTIFIED WITH > 75% EFFICIENCY (85% FUEL UTILIZATION)
- ATMOSPHERIC PRESSURE MCFC CONFIGURATIONS IDENTIFIED > 70% EFFICIENCY (85% FUEL UTILIZATION, EFFICIENCY >75% AT 90% FUEL UTILIZATION)
- O₂ BREATHING SOFC HYBRID CONFIGURATION WITH CO₂ RECOVERY IDENTIFIED WITH 60% EFFICIENCY

COAL

- CONVENTIONAL HT GASIFICATION BASED HYBRID EVEN WITH HT GAS COOLING DIFFICULT TO MEET V21 EFFICIENCY GOAL
- NEED LOWER TEMP GASIFICATION

PROJECT STATUS

- COMPLETED SCREENING ANALYSES OF NATURAL GAS BASED CYCLES, INCLUDING OPTIMIZATION
- SCREENING ANALYSES OF COAL BASED SYSTEMS INITIATED, TO BE COMPLETED BY THE END OF 2002
- DETAILED ANALYSIS TO BE COMPLETED IN 2003 INCLUDING
 - PART-LOAD PERFORMANCE
 - AMBIENT TEMP SENSITIVITIES
 - COST

